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Abstract. The two-dimensional isolation oxidation of silicon is studied in the reaction-controlled limit, which
corresponds to the case of initially thin oxides. This limit is both of physical relevance and one of the few regimes
in which analytical progress can be made in the whole oxide region. Slowly-varying or long-wave approximations
can be used to derive equations that govern the growth of the oxide interfaces (which form two moving boundaries)
and the oxidation-induced stresses in the oxide. Here, these equations are solved numerically, by use of a Keller-
Box discretisation scheme, complementing previously obtained asymptotic results. The numerical scheme is used
to investigate the effects of the nitride-cap rigidity and the initial oxide thickness on both the lateral extent of
oxidation (the so-called ‘bird’s beak’ length) and the stresses that occur on the silicon/silicon-oxide interface. The
results from the model are interpreted in dimensional form so that quantitative comparisons can be made with
experimental results.
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1. Introduction

The local oxidation of silicon (LOCOS) is a well-studied process (first reported by Appels

al. [1]) in which oxide is selectively grown on part of a silicon wafer during the fabrication of
an integrated circuit. This selective oxidation is achieved by masking the parts of the silicon
surface where devices will be formed with silicon nitride and then growing the oxide (known
as the field oxide) by the thermal oxidation of the unmasked silicon, the nitride being impervi-
ous to oxidant. Before the deposition of the nitride mask, a thin oxide (known as the pad oxide)
is grown on the silicon in order to reduce the stresses that result from the different thermal
expansion coefficients of the silicon and the nitride. Since an oxidant is able to diffuse laterally
under the mask through the pad oxide, the resulting oxide has a characteristic shape known
as a bird’'s beak. The model equations for the two-dimensional problem of this process are
discussed in detail in King [2, 3] and these describe a moving boundary problem commonly
termed the bird’s beak problem (see also Tayler and King [4]). The important goals of the
modelling are to determine conditions that minimize both the lateral extent of oxidation (the
length of the bird’s beak) and the oxidation-induced stresses. An asymptotic analysis of the
model equations in the reaction-controlled case is given in King [5]. Here we complete the
analysis of the reaction-controlled case by providing numerical results which complement the
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Figure 1.The bird’s beak geometry during local oxida- Figure 2. A schematic summarising the times and ini-
tion. The pad oxide thicknessdscm (ora x 108 A), tial oxide thicknesses in which analytical results may
whilst the nitride mask has thicknegscm (ord x  be obtained in the whole oxide region. The reaction-
108 A) and half lengthe cm (or¢ x 10* um). The controlled limit corresponds to the region whefe<
silicon/oxide interface is af = — f(x, ) for —oco < D/a.

X < £ and the nitride/oxide interface is at= 7(x, 1)

for 0 < ¥ < £. The problem is assumed symmetric

about the symmetry boundaky= ¢.

previously obtained asymptotics, and then interpreting the results in dimensional form. The
layout of the paper is as follows:
In the remainder of the introduction, a summary of the previous analytical work by King
[3, 5] is given; the system of equations describing the growth of the interfaces and stresses
are stated together with their important similarity solutions and asymptotic results. Numerical
schemes for these systems of equations are presented in Section 2, which are based upon a
Keller-Box discretisation scheme. In Section 3, the numerical schemes are used to determine
validity ranges for the asymptotic results summarised in the introduction and to investigate
the parametric dependence of the stresses. Finally, Section 4 interprets the results obtained
in Section 3 in dimensional form, by providing values for the dimensional parameters and
comparing them to results obtained experimentally.

The important geometry is shown in Figure 1, where the two moving boundaries are the
oxide/silicon interfacey = — f(x, f) and the nitride/oxide interfaceé = #(x, f) or the ox-
ide/gas interface = h(x, f) (depending on location). The variables stated are dimensional,
with X andy being horizontal and vertical distancésime, a cm (ora x 10 A) denoting
the initial pad oxide thickness, cm (ord x 10° A) the nitride mask thickness and 2¢n (or
2¢ x 10°um) is the total length of the nitride mask. In the reaction-controlled limit (see King
[5]), the following dimensionless variables are introduced,

, X=€e—, 1=c¢€ T? ,
a as\
together with theD (1) dimensionless parameters

_»Ka 2 AET Ha
k=e?—, Ry=c¢ . H=-"2.
D uDa D
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Here D (c?/s) is the diffusivity coefficient of the oxidant through the oxide(cm/s) is the
reaction coefficient for the first-order reaction at the silicon/oxide interfaicégm/s) is the
gas-phase transport coefficient(poise) is the viscosity of the oxide a&¥ (Pa cnd) is the
flexural rigidity of the nitride mask. The parameter= N/yc* is dimensionless where*
(cm~3) is the equilibrium concentration of the oxidant in the oxide, ahttm—3) denotes the
number of oxidant molecules that combine with a unit volume of silicon to form a volume
y ~ 2:25 of oxide. It is this net volume expansion pf— 1 ~ 1.25 which drives the flow

of the oxide and gives rise to the deformation of the nitride/oxide and gas/oxide interfaces.
The parametet is small and is that used for the perturbative analysis. Sinee O (1) this
corresponds to the cage<« D/K where the initial pad oxide thickness is small compared
to the length scalé /K. This is termed the reaction-controlled case. King [5] derives the
following coupled problem for the leading-order growth of the boundaries in the régierD
(under the nitride mask),

kfor = (o + fo) foxe) - (1.1)
R> 3
T)O‘( - (y - 1)f01’ - E ((770 + fo) UOXXXXX)X ) (12)
K
atX =0: fo= ;‘L’ » NMoxxy = Noxxx = MOoxxxx = 0, (13)
asX »>o0. fo—>0 no— 1, (1.4)
att =0: fo=0, n=1, (15)

where fo(X, ) denotes the leading-order term (in a regular expansion in powet$ aff

the silicon/silicon oxide boundary ang(X, ) denotes the leading-order term of the ni-
tride/silicon oxide boundary,e. f ~ fo(X, ©)+ O(¢) andn ~ no(X, )+ O (¢) are posed for

X > 0. The linear growth condition for the silicon/silicon oxide interface imposed at the ni-
tride mask edg& = 0 follows from the one-dimensional Deal and Grove [6] solution, which

is assumed to hold in the field oxide. Specificaliy~ a f (t) andh ~ a ((y —f+ 1) in
X < 0 wheref is the positive root of
1 22 1 € p_ 2
= 1+ —+— = 1.6
2Vf+(+H+K>J/f €t (1.6)

which upon expanding in regular powerseofives

A~ KT 1\ k7t k272
f~——€% |:<1+—)—+—:| 2.7)
14 H) vy 2y

with the linear growth condition at leading order. The leading-order stresses under the nitride
mask are as follows,

011,022 ~ —Rologyyx » 012 ~ €RoNoyyxxy (=3 + 300 — f0)) (1.8)
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whereo;; is a suitably scaled dimensionless stress tensor (see Section 4) with 1 denoting the
X-direction and 2 they-direction. The stresses arg(1) and larger than those at the mask
edge and in the field oxide which are orii(¢). It is worth mentioning that the nitride mask
is treated as semi-infinite, the relevance of this assumption is considered in Section 3.3.

The system (1.1)—(1.5) further simplifies for the cases of small nitride rigidity—-¢ 0)
and large nitride rigidity R, — o0), which are discussed in Appendix A. These limits are
important as they provide the greatest and least extents of lateral oxidation respectively. In
both cases the governing equation for the growth of the silicon/silicon oxide interface can be
written in the form,

Ji= A+ )fedy s (1.9)
with

atx =0 f=t, (2.10)

asx »oo f—0, (1.11)

atr =0 f=0, (1.12)

under the scalings

f=vfa, t=«kt, x=4kX, (1.13)

for small nitride rigidity wheref; is now the leading order position of the silicon/oxide
interface, and

f=1/s. t=§r, x= kX, (1.14)

for large nitride rigidity, wheref; denotes the leading-order position of the silicon/oxide
interface.

It is known that (1.9)—(1.12) possesses a travelling wave solution of varying speed (King
[3, 5]), the implicit solution being given by

! du
=V2x. 1.15
/f (u — log(L + u))/? vz (1.13)

This solution, when expresssed in terms of the travelling wave variablex — d(¢), takes
the form

1 ! du
_ = , 1.16
: ﬁ/f (u — log(1 + u))*/? (1.16)

where

d(t)—i/l du
CV2Ji (u—log(d 4 u))*?

(1.17)
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denotes the position of the front of the travelling wave (taken to be whetg ff the scalings
(1.13) and (1.14) are used, this defines the wave frants) = d(kt)//k andds(t) =
d(kt/y)/+/x in the small and large nitride rigidity cases, respectively.

Finally, (1.7) shows that the reaction-controlled case remains valid ung O(e~2),
corresponding to dimensional timégA D/K?) s, which is when the slowly-varying approx-
imations and the expansion in (1.7) are expected to breakdown. Figure 2 indicates the extent
of validity of the reaction-controlled case and summarises other limits for which analytical
results can be obtained for the whole oxide region in terms of time and initial oxide thickness.

2. Numerical methods

In this section finite-difference schemes are presented for the numerical solution of the two
types of evolution equations stated in Section 1. These two systems of partial differential
equations are central in describing the growth of the boundaries and the development of the
oxidation-induced stresses within the oxide.

For both evolution equations, we adopt the Keller-Box discretisation scheme and solve
the resulting nonlinear algebraic equations using Newton iteration (see, for example, Ce-
beci and Bradshaw [7]); the scheme, which is second-order accurate in both time-like and
space-like variables, is perhaps more familiar in the solution of thermal and viscous boundary-
layer equations, so that its application in the present context warrants further explanation, as
follows.

2.1. A'PSEUDGPARABOLIC’ EQUATION

Writing f; = g in the governing Equation (1.9), and further introducing g,, we note that
(1.9) can be written as three first-order differential equations, that is

h=g., g=1+/fHh),, fi=g (2.1-3)

Introducing a rectangular mesh with grid points(&f),;_o
guently with mesh spacing

~ and(t;)j—o1,., and conse-

.....

Ax; = x; — Xj_1, 1= 1,... N, Al‘j =1 —tj-1, _] =1,..,

we discretise (2.1) and (2.2) abomi_%, ti+1), and (2.3) abou(xl._%, tj+%), to obtain the
following finite-difference forms:

1 8ij+1 — 8i-1,j+1
> (hi,j+1 + hi—l,j+1) — SLJY A I (2.4)
1 (1 + fi,j+1) hij+1— (1 + fic1j+1) hic1
> (gi,j+l + gi—l,j-i-l) = Ax, , (2.5)
fi—l,‘+1_fi—l.' 1
5:J — 2 _ > <gi—%,j+1 + gi—%,j) , (2.6)
J

where, for any variable , ¢, 1, = 3 (¢ix + bi-1.4)-

Introducing the iterate$,.(,”,.)+1, n=20,1,2, ..., wheren denotes the iteration order, we set
for the higher iterates '
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¢i(,’;)+l = ¢t(,n1ji-]i) + 8¢l . (27)

Inserting into (2.4)—(2.6) and linearising givesfoe 1, ..., N,

2 2
- Sgi + | —— ) 8g;_1 + 8h; +8h;_1 = R, 2.8
(5 ) ser+ (o ) dsima-t Shi -4 ohica = 28 28

1 1

(11? L Zh(n)l 1
—— L+ — L8 fia + g + g

Axi Ax,
21+ £740) 21+ £ 1 10)
s ———— I, g = R, 2.9
Axi + A)C,' ! 2.0 ( )
i Sfi + i 8fi—1— 1- 8gi — } 58i71=ﬁ(n-), (2.10)
At; At; 2 2 3.
where

2
(n) _ (n) (n) (n) o)
Rii = A4 <gi.,j+1 - gi—l,j+1> - (hi.,j+1 + hi—l.,j+1) :
1

2
(n) ) ) ™ ) o (n) (n)
Ryi =~ (gi7/+1 + giil.,j+1) T A {(1 + fi,l;+1) hiliea — (1 + fifl,j+1) hiril,j+1} :

(n) _
RM _ _2<fi*%>f+l f’"%’/) n ( ) + )
3= AT Si-giu T 8imd)-

For the numerical scheme, three boundary conditions are required in order to supplement
the 3V algebraic equations given by (2.8)-(2.10), for tié-83 unknowns($f;, 8g;, 8h;)i—o... N-
Although (1.10) and (1.11) suggest only two conditions, a third may be deduced from (2.3);
so, we have

Jojri=tir1, fyj+1=0, g j+1=1 (2.11-13)
which lead to

8fo=0, 8fy=0, 8go=0. (2.14-16)
As for the initial conditions, it is clear that, as— 0, (2.2) reduces to

8 = 8xx (2.17)
with the solution, subject to boundary conditions,

g=¢€". (2.18)
Thus, we arrive at

fio=0, go=€" hog=—€". (2.19-21)
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The above scheme gives a block tridiagonal system of equations to be solved for the iterates
(8f;, 8gi, 8hi)i—o... .~ atthe(j + 1)th time step. Typically, the convergence criterion

max (8f;, 8g;, 8h;) < 107°
i=0,..., N( f g )<

on the Newton iteration was found to be satisfied after 3 or 4 iterations. Additional comments
concerning the numerical scheme, in particular the discretisations used and the size of the
computational domain, are relegated to the end of Section 2.2.

2.2. ASIXTH-ORDER EVOLUTION EQUATION
Writing fo, = g, and introducing
nw=ny"(X), m=1...5

where here the superscript denotes the order of the derivative with respgotviomay write
(1.1) and (1.2) as nine first-order differential equations, as follows:

Nm = Nm-1x, M= 1...,5 (222)

h=gx, kg=(o+ fohyx, fo.=28: (2.23-25)
R, .

no, —(y —Dg= 12 ((no+ f0)°ns) - (2.26)

Introducing a rectangular mesh with grid points(at);—o_. » and(z;);=o1,., and conse-
guently with mesh spacing

AX,'=X,'—X,'_1, i=1,...,N; A'Ej=‘[j—‘lfj_1, j=1,...,

we find that these become, in finite-difference form,

1 [n’"—l]i) it [nm—l]iil’ i1
> ([nm],.,j+l+ [nm],'_ml) = LAk AX M form=1,...,5, (2.27)
1 8ij+1 — 8i-1j
5 (hija+hicajin) = jHAX,» L+l (2.28)
% (8ij+1+ &i-1j41) =
(['70]1',”1 + [fo]i,j+1> hij+1— <[770]i,1)j+1 + [fo]l.fl)Hl) hi—1j+1
) (2.29)
AX;
[fO]l-,l i+1 [fo]i,l i 1
zsﬁztj ) _ > (gifé,jJrl + gF%,j) ) (2.30)

[’70],-7;)4 11— [770][7;’. (y -1
2 J+A-gj 2] _ > (g,'_%,j-i-l + gi_%’j> =
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3 3
R, ([770]1',/'+1 + [fo]i,j+1) [775]i,j+1 - (['70][—1,/'+1 + [fo]i—l,j+1) [’75]i—1,j+1
12 2AX;

([’70]1',]’ + [fo]i,j>3 [’75]1',]' - ([’70][71,1' + [fo]ifl,j)3 [’75]1'71,]'

2.31
2AX; (2.31)

+

At this stage, it would appear that we are once again heading for a block tridiagonal system,
albeit that the blocks are now:99, rather than 3« 3 as before. Indeed, this was the scheme
that was initially tried, before it became apparent that it was impossible to obtain convergence
for the Newton iterations. Consequently, it became necessary to break up (2.27)-(2.31) into a
third-order system consisting of (2.28)—(2.30), and a sixth-order system consisting of (2.27)
and (2.31); thus, one system was solved to convergence, its results substituted in the other,
which was then also solved to convergence and its results substituted in the first, and so on
until convergence for the outer loop was obtained. Further details are as follows.

Introducing the iterates for the functiorfs, g. /2, [11],,_, s @s

(v,n) (v,n—1)
[fo]i,jil = [fo]i,jzlrl +34 [fo]i ’

(v,n) (v,n—1)

(v,n) (v,n—=1)
81 =81 tOg, hy=hlT + 6k,
(v,n) (v,n—1)
["m]i,jﬂ = [”m]i,j+1 +8[mm],. m=0,...5

wherev denotes the order of the outer iterative loop andenotes the order of the inner
iterative loop, we have at thegh outer step, after linearising,

2 2
=) sg +—=)6g,_1+8h; +6h;_1 = R"", 2.32
(Axi) § +(Axi> Simi O E ' o (2.32)

2" 2h"7,
i,j+1 i—1,j+1
() s [f], + [ R ) s o], + Kb + KO
( AX; ) [fo]l+< ax, )0 Loliatwdeitwdgia

CAX; ([}70]’9’;11) + [fO]’("U-;i)l) Ohi T 7Y, ([UO]EV—?}H + [fo],(v_’fprl) 8hi_1
2"}, 2R
B ( A’}j;l> 5 [mo]; + (% 8 [mo],_, = ‘Rgz g (2.33)
l 1 l 1 v,n
<E) o[ fol; + (E) 8[fo]i_y - (§> 5gi — <§> Sgi1= RG}", (2.34)
J J

where

2
(v,n) _ (v,n) (v,n) (v,n) (v,n)
Rei = 1x (gi,j+l - gifl,jJrl) - (hi,j+l + hifl,jJrl) ’
l
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2
(v,n) (v,n) (v,n) v=1) (v,n) (v,n)
Ry~ =—k (gz j+1 T8y, ;+1> AX, {([’70 li j51 + [fol lj+l> hi ;i1
L
(v=1) (v,n) (v,n)
- ([770]i71,j+1 + [fO]ifl,jJrl) hifl,j+l} ,

2 <[f0]?i"_£)’j+l - [fo]i_%,j)
A‘L’j

Rgi" = — +<g““ +gh_),

1

and[no]l ;+1 ) denotes the converged solution fgrafter the(v — 1)st outer iteration. Having

found [ fol;"?,1. &"7s1. 1y}, 1, We move to

2 2 v
5th+5b“L]7_<A&>5[m”ﬂ“+<Ax)5[mﬁﬂi1=5¢J%

m=1,..5, (2.35)
_| R ([ﬂo](v "+ ol ) (51" 8 [ fo],
4AX,' i,j+1 i,j+1 i,j+1
R v,n v,n (V - 1) (V - l)
anx (0142 + Lol 1) [nslflfjH} 8 [fo], 4 — 508 — 505

1 R (v,n) (v,n)
e " ax (1ol + Lol r) Tnsl 6 o],

1 R, . o)
+ A—‘L’j - IAX, ([770] —1,j+1 + [fO], 1]+1) [775],',11’]41 1) [770][._1
o0 1) 3 ) ) 3
Ry ([770 i,j+1 + [fO i j+l> 5 R> ([770],',’1,]41 + [fO]i,l)jJrl) 5 R(U "
- 12AX; 775]" + 12AX, [’75],-_1 =i >
(2.36)
where

2
Ryt = < (-2l = el 1) = (17 + D)) )
1
m=1...,5,

(v,n) __
'(Rg,i = T A

(v,n) (U)
a0l = ol )+ 0 =D (g, +ey)

R (v,n) ® \r. qwm (v.n) ) )
+12A2X,- {([’70]1',1'11 [fo], ,+1) [775]1',;11 - (['70][—:,/'+1+ [fo]i—l,j+1> ['75],-_;,41

+ ([770]1',; + [fo]i,j)3 [775]i,j - ([770]1'—1,,;' + [fo]i—l,j>3 ['75], 1/}
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This time, nine boundary conditions are required to supplement sheduations for the
9N + 9 unknowns. Equations (1.3) and (1.4) give six of the required conditions:

KT;
[ folo,j+1 = JJ/H, [n2]0,j+1 = [M3lo,j+1 = [n4lo,j+1 = 0, (2.37)

[foln.j+1 =0, [moln.j+1 = 1. (2.38-39)

As in Section 2.1, we may use the conditions fprat X = 0 and asX — oo to derive two
boundary conditions fog, namely

K
go41= e BN =0 (2.40-41)

as a final boundary condition, we set

[mly.j+1=0. (2.42)

Subsequently, (2.37)—(2.42) reduce to zero boundary conditions:

8[folo=0, &[n2lo=38[nzlo =3d[nalo =0, (2.43)
8[f0]N = Oa 8[']0]N = 0’ (244_45)
8g0=0, dgn =0, &lmly =0, (2.46-48)

As for initial conditions, (1.5) gives conditions on seven of the variables:
[fO]i,O - 0’ [770]1',0 - 17 [77m]i,0 - 0’ for m = 17 eeey 57 (249)

fori =0, .., N. Forg andh, we require the solution to (2.24) as— 0, that is

K8 = &xx, (2.50)
subject to
g=% atX=0 g—0 asX — oo; (2.51-52)
14
thence
g= fe—/«%x
14

so that, fori =0, .., N,
1 2 1
gio= —e i o=k, (2.53-54)
14

The convergence criteria employed here were, for the inner iterations,

ngax (8[ foli» 8gi» 8hi) < 107°,
i=0,.N
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max  (8[n.);) < 107,
i=0,.,N;m=0,..,.5

whilst for the outer iterations we use

(U) (v 1) (v) (v=1)
iznc}a)](v( fo ij+1l T f i,j+1 | | gz ,Jj+1 gl J+1 |

1 1 9
A=A (1l — a2 ) 5)<10 ;

3 or 4 iterations were found to suffice for both the inner and outer iterative steps. In general, for
the computations of this subsection and Section 2.1, uniform dimensionless time steps of 10
were used. However, since one of the goals of this work was to determine both maximum and
minimum stresses, which for high values®f were found to occur for values of dimension-
less time less than 18, numerical integrations of the equations of this subsection were started
with dimensionless time steps of 10 A further comment here concerns the discretisation in
space, and in particular the setting of the outer edgg)(of the computational domain. From
the analysis in Section 1, it is clear that the solution is in the form of travelling wave, and it is
thus necessary to ensure that, for a given integration end-tumggay), the peak of the wave
has not reached .; consequently, higher values af,4 require higher values oX,. This
situation is of course in contrast to that for viscous boundary layers where there is no such
wave. As an example of these considerations, we note that the results in Figures 4a and 5a
were obtained wittX ., = 40 andreng = 500; for the discretisation in space, uniform spacing
with N = 1001 was used.

Whenk = 0 in (1.1), (1.2) gives the sixth-order parabolic equation = (1370yyyxx)x
which is yet another equation in a hierarchy of nonlinear partial differential equations describ-
ing the motion of thin viscous droplets under different forces (see King [5]). The numerical
scheme presented may be used for this sixth-order equation and can be modified to deal with
the lower fourth- and second-order variants which arise when the driving forces are surface
tension and gravity respectively in place of the light plate.

3. Numerical results

We are particularly interested in the growth of the oxide/nitride and the oxide/silicon bound-
aries, and the behaviour of the largest stresses which occur under the nitride mask. The growth
of the interfaces will be bounded by those for the small and large nitride rigidity which we
discuss first, before considering the oxide stresses.

3.1. ASYMPTOTIC APPROXIMATIONS FOR THE INTERFACE GROWTH

The silicon/oxide and oxide/nitride interfaces are bounded by those in the small and large
nitride rigidity cases, namely

(X, 1) < folX, 1) < fiX, 1) and n3(X, 1) < no(X, 1) < ni(X, 1)

where, as discussed in Appendix#, = 1 andn, = 1+ (y — 1) f1(X, 7) for X > 0 and
7 > 0. There are different definitions of the bird’s beak length (see Poncet [8]), but here it
is taken as the distance from the nitride-mask edge to where the oxide thickness has doubled
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10 T LI L 16 T T T T T T T T T T T
— f{z) from (1.16) |
- Asymptotic approximation (3.1}
-— Asymptotic approximation (3.2) 14 ~

8- ]

10

f(2)
d(t)

5 4 3 2 -1 0 1 2 3 4 5 0 20 40 60 80 100

Figure 3. Plots of the travelling wave solution and the location of its front. (a) shows the solitignfrom
(1.16) together with the asymptotic approximations (3.1) and (3.2). (b) shows the location of the front of the
travelling-wave solutior/(¢r) from (1.17) together with the large-time asymptotic solutiéar.

from its initial thickness. Since; + f1 = 2 atyf; = 1 andns + f3 = 2 at f3 = 1, the
functionsd,(r) andds(t), given at the end of Section 1, thus characterize the bird’s beak
length in the small and large nitride rigidity cases, respectively; the extent of lateral oxidation
being greatest in the small rigidity case and least in the large rigidity case.

The travelling-wave solution (1.16) has the following asymptotic behaviours,

2 3

f ~age ™ — 6%06722 + 2—26731 asz — +o0o, (3.2)
22
f~ E — \/Ealz +2log(—z) + 2+ af —log2 asz— —oo0, (3.2)

where the constantg ~ 1.35 anda; ~ —0-45 are determined numerically. These asymptotic
behaviours are shown in Figure 3a and are good approximationset z < 0.5, covering
most of the range of the travelling wave variable.

The large-time behaviour of (1.9)—(1.12) or equivalently (1.15), is derived in Appendix B
and is a moving parabola, whose front is located/at (i.e. v/2t and./2t/y for the small
and large rigidity cases, respectively). The outer (moving-parabola) solution

2
X

is a reasonable approximation for< +/2r — 5, the solution then after being given By~ rq
where

1.607 dU
=v2(x—var). 4
/ro (u — log(1 + u))Y? V2 (x \/_t> (3.4)
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Figure 3b shows the position of the travelling-wave fraiit) from (1.17) and the large-
time behaviour/2z. This indicates that the large-time approximation begins to be valid for
t > 0(0) (i.e. T = 0(100/«) for small nitride rigidity andr > O(100y /k) for large
nitride rigidity), although we would not expect the outer moving-parabola solution to emerge
to form a significant part of the large-time solution until much later. The outer solution would
be expected to be valid for approximately/2r —5)/+/2 fraction of the large-time behaviour
solution.

3.2. OXIDE STRESSES

Of particular importance during the oxidation process are the oxidation-induced stresses in
the oxide. If these stresses are too large, dislocations may be generated in the silicon substrate
with detrimental effects on device operation. In this section we present the numerical results
for the leading-order stress terms stated in (1.8) and their dependence on the nitride rigidity
parameteR,. Although the shear or tangential stress is seen to be an order of magnitude
smaller than the normal stressgag andos,, it is often the resolved values of the shear stresses
that are critical in determining the generation of dislocations (Tamura and Sunami [9], Isomae
[10] and Isomae and Yamamoto [11]) and for this reason we investigate its behaviour as well.

The main region of interest is under the maskXxin= O(1), where largest stresses are
expected to occur compared to the mask edge and field oxide regions. Since the parameter
« can be removed from the problem by a suitable rescaling of the other variables and the
parameterR,, it is sufficient to consider the cage= 1 and the dependence of the stresses
on the nitride rigidity parameteR, only. Figure 4a shows the developmentigf,,, with
time for the parameter valuR, = 1. Figure 4b shows the dependence of the maximum and
minimum value ofRzno, ., With Ry, whilst Figures 4c and 4d shows the position and time
when the maximum and minimum occur, which we note are not continuous Ryitlthis
suggesting that there is a certain region where the minimum stresses are of greater absolute
magnitude than the maximum stresses. The oscillatory behaviour of the normal stresses is not
unexpected since the total normal force exerted on the nitride mask must be zero at leading
order. Physically, the plus and minus signs of the normal stresses correspond to tensile and
compressive stresses, respectively.

Figure 5a shows the development of the scaled shear stigss on the silicon/oxide
interfacey = — fp and gives an indication of its oscillatory behaviour. Figures 5b, 5¢ and
5d show the maximum and minimum values of the shear stress on the silicon/oxide interface
and the position and time when these maximum and minimum values occur, the position of
the maximum shear stress always occurringtat= 0. Again, there are similar qualitative
features as in the normal stress case, where the position of the minimum stress occurs further
under the mask as the rigidity increases although in this case the maximum always occurring
at the mask edg& = 0 and the largest stresses occurring at progressively earlier times for
increasing mask rigidity.

3.2.1. Small nitride rigidity

Considering the limitR, — 0 for small nitride rigidity, it is observed from Figures 4b and 5b
that the maximum and minimum values of the stresses become smaller, whilst Figures 4c and
5¢ show that their positions occur nearer to the nitride mask edge in agreement with the results
of the asymptotics derived in Appendix A. It is in this case that the lateral extent of oxidation
is the greatest, with the bird’s beak length being characterisefi 3y = d(x7)/+/k, with
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3-d plot of ng, , ,, With X andz for the parameter valug, = 1. (b) shows the maximum and minimum value
of —Ronoyyxx With Rp, whilst (c) shows the position and (d) shows the time of these maximum and minimum
values withR».

d(t) as defined in (1.17). Interestingly, the large-time behaviour for the stresses in this limit
have some noteworthy features. The stresses are largest in the PégionO(Ré/ ®) near

the nitride-mask edge and are again oscillatory. These can be shown to decay far, large
where the asymptotics are described in King [5]. Relevant to the normal stresses in the region
X = 0(1), the implicit travelling-wave solution (1.15) and the scalings (1.13) together with

(A.1) gives

(y — Dk?
y(yfa+ 13

which is shown in Figure 6. The large-time behavioumgf, ., exhibits the emergence of a
travelling-wave solution, the details of which are given at the end of Appendix B. Although

the normal stresses are smaller than thosE ia O(Rg/a), they do persist at large time.

Myxxxx =

(4log(yfi+1) —3yf) , (3.5)

3.2.2. Large nitride rigidity

In the limit R, — +oo for large nitride rigidity, the maximum and minimum stresses occur
further under the nitride mask (Figures 4c and 5c¢) and at earlier times (Figures 4d and 5d).
Indeed, Figure 4b suggests that the maximum normal stress tends to a limit, which is consistent
with the asymptotic results described in Appendix A for this case. For [Erdé.7) gives the
behaviour
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the maximum value of which occurs for smaland is 12(y— 1)/y ~ 6.7 agreeing with the
numerical value in Figure 4b and noting that

Ilm RZUOXXXX — g‘XX .
Ry—o0

For large timezxyx = O(r~Y/?) and the normal stresses decay at this rate in Woth O (1)
andX = O(Ré/e) regions. Figure 7a illustrates the behaviour of the functipn. The shear

stress on the oxide/silicon interface is obtained from the expression

A+, _ 6y —Ddsfs
2 YT a4 2

and its evolution is shown in Figure 7h.
It is in this case that the lateral extent of oxidation is the smallest, with the bird’s beak
length being characterised by(t) = d(xt/y)/+/k With d(¢) as defined in (1.17).

3.3. HNITE-LENGTH MASKS

For finite-length masks, the system of equations governing the leading order growth of the
boundaries and the stresses are now given by (1.1)—(1.3) and (1.5) with the boundary condition
(1.4) replaced by the symmetry condition

at X =L fo, =0, 7oy = Noyyy = Noyxxxx =0 (3.6)

where L is the non-dimensional half length of the nitride mask.(L = ¢£/a where 2 is

the dimensional nitride mask length). The asymptotics for this case are significantly different
from the semi-infinite mask case and are discussed in Etaaig12], although the numerical
schemes in Section 2 need only minor modifications to deal with (3.6). In particular, (2.38),
(2.39), (2.41) and (2.42) are now replaced by

gn.j+1 = [niln,j+1 = n3ln,j+1 = [sln,j+1 = 0, (3.7)
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which then leads to
dgn = 8[mily = 8nsly = dlnsly = 0. (3.8)
As for the initial conditions, the only change is that (2.52) is replaced by
gx=0 atx =1L, (3.9)

which then leads to

_ Kk coshiyk (L — X))

= 3.10
y cosh(kL)) (3-10)
and thence, foi =0, ..., N,
3 .
g0 = K coshi/k (L — X;)) o= x2 sinh(/k (X; — L)) ‘ (3.11-12)

y coshiykL) = "y coshy/kL))

As in the semi-infinite mask length case, the parametegin be scaled from the problem
and thus it is sufficient to consider only the paramefrand L. Figures 8a and 8b describe
the variation of the maximum and minimum values of the normal stRess, ,,, with both
R, and L, whilst Figures 8c and 8d describe the variation of the maximum and minimum
values of the tangential stress (scaled weitRono, x5 (Mo + fo)/2 with bothR, and L. In
each case, the maximum and minimum values are the same order of magnitude foreeach
show the same qualitative behaviour as for the infinite length maslkheir position being
progressively further under the nitride mask (up until the symmetry boundasy L) and
occurring at earlier times as the rigidity coefficient increases.

From the results in Section 3.1 fdr infinite, the large-time approximation holds for
t > O(t, = 50), the moving parabola forming a significant part of the approximation when
t > O(t, = 1000) and the scalings (1.13) and (1.14) with= 1 giving the the corre-
sponding times for small nitride rigiditieR¢ <« 1) and for large nitride rigiditiesk, > 1),
respectively. Thus we would expect to see these large-time approximations fnitfiaite
case, form solutions for intermediate-time in thdinite case wherL > /2, ~ 15, with
L > /2t ~ 45 for a near parabolic interface shape. Figure 9 shows the growth of the
oxide thicknesgno(L, t) + fo(L, 7)) at the mask mid-poinK = L for varying R, and L
with « = 1. The larger values of show that the approximations @&?/2 for large rigidity
andy L?/2 for small rigidity, obtained from the the moving-parabola solution, are reasonable
indications of the times at which the lateral extent of oxidation reach the symmetry boundary.

4. Application of results

Here we provide values for the dimensional model parameters, in order to ascertain which
part of the physical parameter space the reaction-controlled limit is valid. The results obtained
in previous sections are also scaled to give dimensional values which are more relevant to
process engineers and other practitioners.

Some of these dimensional parameters show a wide range of values that vary with differ-
ent process conditions. For instance, the diffusion coefficies affected by temperature,
oxidising ambient (dryO, or wet H,O) and the external pressure of the oxidising ambient,



208 J. D. Evans et al.

10' L e L e

™=

10°
107

102
107%
104
108

max(ayy, o22)

10
107

NLSLELL IR L L B I AL R

vormd o vl veod ool eod cduadsud

o-Ei\rv‘Vliv'i\vv‘vwvv'll\v‘lvl
10" 10 10° 10° 101 10"
RZ

o

(=3
1
S

e max (o1aly1,)

PISVERS IS S SO SOV AT R S U AU SRS S S

100 10° 10% 1018

R,

109

— min(ayy, og2)

~¢~  min (19—,

LN B

101
100
107
102

LA S Bk B B B B B e e

10
10
10
10®
107

cooned vl ovomd s vond yromd vomd 3o

TS TN S N SO S O WO N

1010 1015

L e b e b g

100

10®
0

© [Ty YTy T, YT T YTy e

-10

a
=]
R

10

o

10°

101

102

108

eond vl ook 3 somd s aanll

bt e e by e b s by e

107 0% 10° 108 1010 107
RZ

1020

Figure 8. Plots in the finite-mask length case for the leading-order normal stresges ooy = —Rono, 4, and
tangential stres@;p = —€ Ronoy y yxx (M0 + fo)/2 With« = 1. (a) shows the maximum values R$no,,, With
R for selected values df, whilst (b) shows the minimum values witty for the same values df. (c) illustrates
the maximum values aRano, vy (M0 + f0)/2 With R, for selected values df, whilst (d) shows the minimum

values withR» for the same values df.

30 T Ifllllﬂ[ T II?IIIi [ T fl.‘:(llll[ flztl
——Ry=10%* g
ﬁ' """ : ;
X 20 L e i ; -
- ; ! i
© j : [N
0 ! HE: v
hn i P o A
o ! I v
o i N
5 / v
g 10 ; 1
— ' P
[} H I
© ;
5 L=2//{ r=%0| i
o e / i
! l!'!!l|l L llII!VII { lIIL!IlI 1 |-
1 10 100 1000
T

Figure 9. The growth of the oxide thickness &t= L (the centre position of the mask)e. fo(L, 7) + no(L, t)
for varying mask lengthg = 1,5, 10,20,50 with for eachL the values of the rigidity coefficient, = 10~4

(small), 1 (intermediate) and 4@large).



Induced stresses in silicon oxidatiod09

Table 1. Dimensional parameter values for selected temperatures and wet/dry oxidation conditions
(SI Units: 1 Pa= 1 N/i= 10 dyne cn?; 1 poise = 10 Pa s)

T(°C) Ambient D (cm?/s) K (cm/s) ¢ (em3) N(em3)  u(poise)
1200  Dry 270x 1078  1.35x 102 52x 106 225x 1022

1100  Dry 143x 1078 361x 1073 52x10% 225x 1022

1000  Dry 6568x 1079 853x 104 52x 106 225x 1022

900 Dry 265x 1079  207x10% 52x 106 2.25x 1022

800 Dry 900x 10710 361x10° 52x 10 2.25x 1022

1200  Wet 15 x 1079 60x 104 30x 109 450x 10?22 6.0x 101
1100  Wet 122x 1079 194x10% 30x1019 450x10%2 60x 102
1000  Wet 721x 1010 530x10° 30x10° 450x 1072 3.0x 1013
900 Wet 389x 1010 116x10°° 30x109 450x 1072 3.0x 104
800 Wet 187x 10710 1.89x 106 30x 10 450x 10?2 1.0x 101

whilst the reaction coefficiert, in addition, is affected by the crystal orientation of the silicon
substrate and doping concentrations. The equilibrium concentration of oxidant in the-oxide

is dependent on the oxidising ambient and the external pressure, and the viscosity of the oxide
wuis temperature dependent. These variations are discussed in Deal and Grove [6]ePaiwell

[13], Hess and Deal [14], Sze [15], Hu [16], Massatdl.[17, 18], Cameliret al.[19], Irene

and Ghez [20], Kaet al. [21], Lewis and Irene [22], Irene [23], Katz [24], Umimogd al.

[25], Susa and Nagata [27]. Table 1 provides a range of values for these particular dimensional
parameters, which were taken from Deal and Grove [6], EerNisse [28], €lf@h[29] and

Wilson and Marcus [30].

Thin initial pad oxide thicknesses are usually upto 1000 A (with those less than 50 A
being termed ultra-thin), whilst nitride mask thicknessgsare typically in the range 100 A—-

5000 A, see for example Bassous and Maniscalco [31], Bohg and Gaind [32], Magdo and
Bohg [33], Isomaeet al. [34], Shibata and Taniguchi [35], Tamadt al. [36, 37], Chinet

al. [29], Isomae [10], Poncet [8], Tung and Antoniadis [38], Sirajhal. [39], Chiouet al.

[40], Huang and Jaccodine [41], Umimoto and Odanaka [42]. Typical mask leagtus be
anywhere in the range 8u.m-10m, with the smaller values being more common recently
as packing densities have increased (Kenk#md. [43] and Parlet al.[44]).

For the nitride mask, a Young’s Modulus = 3 x 10*! Pa and a Poisson’s Ratio= 0-3
are typical and are taken from Ireeéal. [45]. Values of similar magnitude can be found in
Poncet [8], Isomae and Yamamoto [11], Umimoto and Odanaka [42]. The inertia of the nitride
mask! A3 is given byl = d%/12(1 — v?) (Umimoto and Odanaka [42]).

We now consider the applicability of the reaction rate limit and the determination of the
dimensionless parameters. Importantly we remark that the original model assumes the oxide
to be an incompressible Newtonian viscous fluid, which is reasonable for process temperatures
above 965C (EerNisse [28, 46], Tan and Gosele [47], Irezteal. [45] and Tiller [48]). For
lower temperatures a viscoelastic or even elastic oxide should be considered. The diffusion
of oxidant was also assumed to be in quasi-steady state and is a reasonable assumption if
A > 1 which is supported by its calculated values in Table 2. For the reaction-controlled limit
we require that the initial pad oxide thickness« D/K, whereD/K is a representative
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Table 2. Important dimensional parameter combinations calculated from the values in Table 1, using also
E = 3 x 10'1 pa andv = 0.3 for the nitride mask

T(°C) Ambient D/K (A) a AD/K?2 wb (Pa A __ M (A2
A 12uD( — v2)

1200  Dry 200 192x 10° 28s

1100  Dry 396 192x 10° 3min3ls

1000  Dry 771 192x 10° 29 min

900 Dry 1280 192 x 10° 3 hr 18 min

800 Dry 2493 192 x 16° 36 hr 50 min

1200  Wet 250 ®7x 10 3s 1.35x 10  2.04x 107°

1100  Wet 629 ®7 x 102 22s 110x 1016 2.50x 1076

1000  Wet 1360 ®7x 10 2min51s R4x 1016 849x 1077

900 Wet 3353 ®7x 107 32min8s 175 x 1017 157 x 1077

800 Wet 9894 ®7x 107 9hr42min  280x 107 9.82x 1078

oxidation length (values for which are shown in Table 2). This limit is physically relevant and
has been considered by Shibata and Taniguchi [35] ancetal. [49]. The dimensionless
parameterse, x, Ro, L} are determined by the following relationships

LE a3 14
= — R —4 =, L =¢€¢— s 4.1
cr=pY 2€ 12uD1 -2 a . (4.1)

and the dimensional time scal@nd the dimensional stressgs are given by

_ Ad? _ uD

= ET s Ojj = ﬁo—lj s (42)
wherez is the dimensionless time scale anglare dimensionless stresses.

Denoting the dimensional field oxide thicknessfyy= f + h = y f 4+ a cm, then the
one-dimensional solution (1.6), when written in dimensional terms, becomes

Xo+ A*xo = B* (7 + fo)

whereA* = 2D (% + %) B* = 2Dc*y /N termed the parabolic rate constant apd=

(a® + A*a)/B*. It is worth remarking that since the gas/oxide transport coeffidignt K

(H = 0(2-8 cmls)), then the characteristic lengilyK ~ A*/2 where A* is a well-
investigated rate constant in the Deal-Grove one-dimensional oxidation model (Deal and
Grove [6]). As remarked by Marcus and Sheng [50] and as we note from Table 2, the charac-
teristic lengthD/K for the oxidation process decreases as the temperature increases. This
characteristic length represents the transition thickness at which the field oxide oxidation
kinetics (which are the one-dimensional Deal-Grove solution) change from linear to parabolic.
Thus at lower temperatures the linear rate law dominates for more extensive oxidation times
and the reaction-controlled limit is valid for larger pad oxide thicknesses. As remarked in
Section 1, the reaction-controlled limit holds until= O (¢ ~2) which in dimensional terms
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Figure 10. Plots of the variation of the dimensional stresse§’at= 1000°C with varying pad oxidex and
nitride maskd thicknesses. (a) shows the maximum normal stiess{d11, 522}), (b) the minimum normal stress
(min{a12, 622}), (€) the maximum tangential stre@aax{o12}) and (d) the minimum tangential strggsin{g12}).

is O(AD/K?) s. This represents the characteristic time of the oxidation process and agrees
with the valueO (A*2/4B*) in the Deal-Grove model which marks the time corresponding

to the transition of linear to parabolic growth regimes. Experimentally the smallest pad oxide
values that can be obtained are around 2 A (Morita and Ohmi [51]), which givé6*) as

the realistic smallest value efthat may be obtained.

The criteria for choosing the model with a semi-infinite length mask, or that with a finite
length, depends upon the relative sizes of the dimensional lengttd the characteristic
distance of the oxidation proce#3/K. If £ < O(D/K) then a finite-length mask would
be applicable, otherwise a semi-infinite length mask should be considered. This follows since
the reaction-controlled stage lasts unti= O (e ~?) and we would expect the lateral extent of
the oxidation to be at mog? (¢ 1) using the moving parabola solution for the large-time be-
haviour of the silicon/oxide interface. Thudlif> O (e~1) then the tip of the moving-parabola
solution (27)*? will not reach the symmetry bounda®y = L by the end of oxidation time
for which the reaction-controlled limit is valid.

Figure 10 illustrates the behaviour of the maximum and minimum stresses with varying
pad oxide and nitride thicknesses for oxidation in a wet ambient at a chosen representative
temperature of 1000C. The values in Tables 1 and 2 have been used, as well as the results
for the maximum non-dimensional stresses discussed in Section 3.2 and the scalings,

Ry = prad®,  (611,022) = ,3_; (011,022) G2 = '872(012/6) : (4.3)
a a

which show the dependence of the dimensional stresses on the pad oxide and nitride thick-
nesses, where

g — LE K\? g M0 g _ D K\
Y“oupa—w\p) 0 T o BT\ Db ’

are coefficients, the values of which change with temperature (Table 2). We remark that with-
out loss of generality we have taken= 1 so thate = (Ka/D)Y?. The maximum stresses
increase as the nitride thickness increases and/or the pad oxide thickness decreases, thus
increasing the chance of dislocation onset. This agrees well with the experimental findings
of Bohg and Gaind [32], Magdo and Bohg [33], Shibata and Taniguchi [35], Taptaki

[36, 37], Isomae [10] and Huang and Jaccodine [41]. The stress field in the silicon substrate
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may produce defects if its value (generally a resolved component of the normal and/or shear
stress in a critical direction depending on the silicon orientation, see for example Isomae
[10], Isomae and Yamamoto [11]) is above the yield threshold determined experimentally
by Tamura and Sunami [9], Vanhellemont and Claeys [52] to be in the raiflge 00’ to

4.9 x 10’ Pa. (This assumes that the starting material is defect-free and that dislocations
are nucleated, the stress threshold for which is much larger than that required to cause glide
of already existing defects.) Although the values in Figure 10 are slightly higher than this
figure, the resolved components can be one or two orders of magnitude less, varying also with
the orientation of the silicon substrate. The position of the maximum stresses are seen from
Figures 5c and 6c¢ to be close to the nitride edge which is where disslocation onset is most
likely to occur, also agreeing with the experimental results of the aforementioned authors.
Finally it should be noted that the scaling (4.3) for the stress agrees in its order of magnitude
with that reported in Matsumoto and Fukuma [53] and Isomae [54].

5. Discussion

Numerical finite-difference schemes have been presented in Section 2 for two important sys-
tems of partial differential equations which arise out of the asymptotic analysis of the reaction-
controlled oxidation case. These partial differential equations are central in describing the
leading-order growth of the oxide boundaries under the nitride mask and the main stresses
that occur within the oxide.

An interesting feature of the stresses are their oscillatory behaviour, which qualitatively
agree with the numerical results of other (similar) models used by &kih[29], Matsumoto
and Fukuma [53], Tung and Antoniadis [38], Isomae [54] and Isomae and Yamamoto [11].
This is particularly important in deciding on the appropriate functional form to use of a stress-
dependent reaction coefficient and diffusion coefficient, which have recently been introduced
to account for the importance of stress effects during the oxidation procese{khd21],
Sutardja and Oldham [56] and Umimagbal.[26]). The stress oscillations are confined to the
mask edge for small nitride rigidities and the central mask region for large nitride rigidities,
that is, the oscillations are pushed to the extremities of the semi-infinite mask for the large and
small mask rigidities.

The reaction-controlled oxidation limit, corresponding to small initial pad oxide thick-
nesses (relative to the characteristic oxidation lengtk), is a particular parameter limit
which allows analytical progress in the whole oxide region for the local oxidation of silicon
(LOCOS) process. It is this limit which is of interest practically since it reduces the extent of
lateral oxidation under the nitride mask (bird’s beak encroachment). Unfortunately, associated
with small pad oxide thicknesses are large oxide stresses which can cause dislocation onset
with detrimental results on subsequent device isolation and operation. These associated stress
fields and the degree of lateral oxidation encroachment have been investigated in this paper
with good quantitative agreement with experimental observations. The dimensional results
in Section 4 for the maximum and minimum oxidation-induced stresses demonstrate how
their values can change by several orders of magnitude when the pad-oxide and nitride-mask
thicknesses are varied within experimental ranges. In practice, it is the resolved components of
stress that are of interest; these may be determined by use of (1.8) together with dimensional
scalings (4.2) and then compared to critical yield stress values in order to indicate when dis-
location onset is likely in the silicon substrate. This information together with the analytical
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expressions (particularly the moving parabola solutions at large time) for estimation of the
bird’s beak length, provide important information about the underlying oxidation process in
the LOCOS geometry.

Appendix A
(1) Small nitride rigidity. To consider the limitR, — 0 we pose the expansions
fo~ i+t O(R), mo~n+ O(Ry),
in X = O(1) for which (1.1)—(1.5) yields
m=¢-bDfi+1, (A.1)

and

kfr, = (it D i)y s

K

a.tX=O f]_:_f,

y (A.2)
asX — oo; fi— 0,
a.tT=O f]_:oa

for the leading-order problem for the growth of the interfaces. This solution does not satisfy

the boundary conditions fop at X = 0 in (1.3) and we find that a boundary layer is required
nearX = 0, the scaling for which is{ = R;/GX. In x = O(1) we obtain the expansions

(after matching with the regiok = 0 (1))
KT 1
for =+ R fie 0.0 + RS0 i O.7)

y-121
K

1/3

no~1+ T+ Ry = Dfu, 0.0) + R

wherenj is given by

x>  Kk%r

=y -1)=——+N
= ) 2 y(l4+«7) +

and N satisfies the problem,

N: = %2(1+Kf)3Nxxxxxx )

B (y — Dx?t

aty =0: Nyy = v+ r7) xxx = Nyoox =05 (A.3)

asy > +oo: N—0,
att =0: N=0.

The leading-order stresses in this case are
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X = O(Rzl/e) I 011,022 —Rg/ngxxx’
1 KT
2
012 ~ eRzl/ Ny yxxx (—y + > <l+ (y — 1)7>) ;

X=01): o11,002~ —RoN1yyxx

1
012~ 6162770)()()()()( (_y + 5 (771 - fl)) (A4)

which are now much smaller with the largest occurring in the regiosa O(RQ/G) near the

nitride mask edge.
(2) Large nitride rigidity. In the limit R, — oo, we seek expansions in the form

1
f0~f3+0(1)7 770’\/773—’_0(1)’ T)OXXNR_ZQ"

where at leading order the nitride is regarded as rigid= 1. We obtain

Kfz, = ((1+ f3) fay )y -

K
a.tX=O f3=_T’
14 (A.5)
atX — +oo: fz—>0,
att =0: fz=0,
together with

—( =D fs, = 15 (L + f2)%xxx)y
atX =0: =l =¢xx =0, (A.6)
asX — +o00: Cxxx — 0.

Using the travelling wave solution (1.15) with the scalings (1.14) as the solution to (A.5), we
may integrate (A.6) to give

12(y — 1yds /“/V udu
=T o2 A7
b 202 Jr o e+ D3 —log(L+ u))/2 (A7)
with
. K\1/2 1
& =(3)

1/2 °
KT KT
y (— —log (1+ —))
14 Y

An additional region is required since (A.7) does not satisfy — 0 asX — oo, the scaling
for which is X = RY°x. In x = 0O(1), f, can be shown to be exponentially small, and thus

we have

-1/3
770~1+R2 /7737
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20— E——— Figure 11. Plot of the inner solutiorrg from (B.2)
------ Asymptotic approximation (B.3) and the asymptotic approximations (B.3) and (3.1) with
———- Asymptotic approximation (3.1} ag = 2553

ro(2)
=
— T

with
s, =155,
atx =0:  m3, =um, =0, mg = lM Cxx, AS)
asy — +oo: n3 — 0,
att =0: n3=0.
The leading-order stresses in this case are
X=0(@1 011,022 ~ —Exx
o12~ €lxxx (—=y + 31— f3)) ;
(A.9)

1/6
X =0, om,00~—n}

-1/6 1
012 ~ ERZ 77>3kXXXXX (_y + E) ’

with the largest stresses occurring in both #he= O (1) andy = O(1) regions far under the
nitride mask.

These results are analagous to those derived in King [5], albeit by a slightly different
method, and are recovered by settiRg = 2R, for small nitride rigidity andR, = ¢3R5
for large nitride rigidity withR1, Rz = O (2).

Appendix B
To describe the large-time behaviour of (1.19)—(1.12), we introduce the scalings

T=6r, F=60f, Y=606Y%,
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using an artificial small parametér and consider the limi# — 0. We obtain the following
structure:
(a) An outer region < Y < +/2T inwhich F ~ Fy+o0(6/?) with the self-similar solution

Y
Fo=TG(), =, B.1
0 (é) 3 Neii (B.1)
where
1-8)2, 1,
G(g)={< £)?, £ <
0, E>1.

(b) An inner region withF = 0(ro(z) + o(1)) andY = /2T + 6%%z, so that inz = O (1)
we have

a2 du
V2= /ro (u — log(1 + u))Y/? (82)

wherea; is a constant which is determined by the matching condition

2
ro ~ % +2log(—z) —log2+2+0(1), asz— —oo. (B.3)

Figure 11 indicates that this is a good approximationzfer —5 and numerically we obtain
a, = 1.607. The outer moving parabola solution (B.1) is thus expected to hold fer
V2T — 502 or equivalently forx < /21 — 5. Asz — +o0, the asymptotic behaviour o
is exponential and is given by (3.1) where nay—= 2.553.

(c) In the third region/2T < Y, f is exponentially small and has the form,

f~ aoe(«/ﬁwvelﬂ )

Relevant to the stresses in the small rigidity caBg {> 0) in X = 0O(1), we note that
frxxx IS 0(0%?) in the outer region, exponentially small in the third region, and in the inner
region isO (1) and has the form

1
o ~ o, = ——— (4log(1 + ro) — 3rg) .
f 0 = (7 +r0)3( a( 0) 0)
Thus for large time, using the transformation (1.13), we have that
(y — Di?

NOxxxx At 10)? (4log(1+ ro) — 3ro) ,

which is of O (1) in magnitude in a region of lengt@ (1) around the moving tiX = +/2t.
Formally, in the large time variablésandT, it should be noted this corresponds to a moving
dipole whereFyyyy = —8' (Y — +/2T ) andé’(-) denotes the derivative of the generalised

delta function. Curiously then, a residual stress field seems to persist at large time in the small
nitride rigidity case.
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